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The application of  a rapid method based on Shafer's theory of  evidence and Narasimhan's  compu- 
tation procedure is illustrated in the testing of  changes in the steady state of  electrochemical processes. 
Specific examples comparing numerical results to those of  conventional multivariate statistics demon- 
strate the attractiveness of  the approach. 

1. Introduction 

Several years ago a new approach to probability [1], 
called the mathematical theory of evidence (MTE) 
was presented. Its major tenet, the degree of belief a 
proposition can be accorded on the basis of evidence, 
and the combination of degrees of belief based on 
distinct bodies of evidence permits the computation 
of belief functions assigned to events. The strength 
of belief in an event is expressed as a fraction of 
unity, upon appropriate manipulations. An interest- 
ing philosophical aspect of the theory lies in its diver- 
gence from classical Bayesian probability theory, 
although the latter may be regarded as a special case 
of evidence theory. Although not yet known widely, 
recent specific applications to fault diagnosis [2] and to 
the detection of changes in steady states [3] portray the 
potential usefulness of this method in applied sciences 
and engineering as an inviting alternative to conven- 
tional methods of multivariate statistical analysis. The 
purpose of this paper is to show its applicability to the 
evaluation of electrochemical system performance: the 
numerical results of analysis are compared to those of 
the multivariate statistical approach [4, 5]. 

2. Summary of Narasimhan's technique [3] 
of the MTE approach 

The objective is to detect changes in a steady state 
using N experimental measurements of independent 
state variables obtained in two successive time periods. 
Three belief functions are assigned respectively to 
three propositions, namely that the process has not 
changed its steady state (S); the process has changed 
its state from the first to the second observation period 
(C); it is not possible to state with certainty that there 
has been a change in the state of the process from the 
first to the second observation period (uncertainty 
proposition U). Then, the combined belief in the three 
propositions is expressed by Demster's rule [1, 3]: 

P 

= H If(S) + f ( v ) ]  (1) 
i - 1  

P 

qS(C) = H [ f ( c )  + f ( u ) ]  (2) 
i ~ l  

P 

= H f ( u )  (3) 
i = 1  

The belief functions are computed according to the 
magnitude of the t 2 statistic of each process variable i: 

_ 

t~ = N s2 + $2 , i : 1 , . . . ,  p ( 4 )  
Yi xi 

where ~, is the mean of the measurements (of variable 
i) in the first observation period, ~ is the mean of such 
measurements in the subsequent observation period 
and ~i, sZxi are the sample variances associated with xi 
and Yi, i = 1, . . . , N, respectively. The t~ are random 
variables obeying Hotelling's T 2 distribution [4, 6]; as 
discussed briefly in the Appendix, in the two-sample 
problem of interest here, the T 2 distribution coincides 
with the F distribution with degrees of freedom p and 
2N - 2. The computation scheme for the belief func- 
tions shown in Table 1 indicates clearly that if t~ is less 
than the critical value of F at a level of confidence c~, 
the belief assigned to a change in the steady state 
indicated by the ith process variable is nil, whereas a 
t~ value larger than the critical F assigns zero belief to 
a lack of change in the steady state. In consequence, 
the degree of uncertainty is pegged to the extent of 
belief in the existence or non-existence of the tested 
steady state. Equations 1-3 indicate that the com- 
posite belief is a product of individual beliefs, which is 
analogous to the elementary theorem of the probability 
of simultaneously occurring events: the overall prob- 
ability is the product of individual and independent 
single-event probabilities. 

3. Computational aspects 

The evaluation o f f (S )  in Step 2a a n d f  (C) in Step 2b 
may require numerical values of the F variate at values 
of ~ not listed in commonly available tabulations. 
A close approximation is obtained by various poly- 
nomials and asymptotic forms [7]; if N is sufficiently 
small, the (~, F)  relationship is calculable, e.g. by the 
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Table 1. The scheme o f  computation for  belief functions based on the 
M T E  theory I (c~ = level o f  confidence) 

Step l: Compute  tg via Equation 4; i = 1 , . . .  , p 

Step 2a: if t2~ <~ FI,2N_2(O~) Step 2b: if t~ > FI,2N_2(~ ) 
then: then: 

f ( S )  = Pr [F >. t 2] f ( S )  = 0 

2c~ -- 1 + (I -- oOPr[F<, t~] 
f , . ( c )  = o L ( c )  = 

f ( U )  = 1 - f ( S )  f ( U )  = 1 - f~(C) 

i Following Naras imhan et al. [3] with some changes in notation. 

expression 

1 - e  = x 3 x2 (1 - x) 1/2 1 + ~ + 

3.5.7 . . . .  (v - 3) 1 
+ 2 .4 .6 . . .  (v 2) x (~-2)/2~ (5) 

where x =- v/(v  + F ) a n d  v = 2N -- 2. On the other 
hand, if v ~ 6 (corresponding to N ~> 4) a t 2 value 
above 14 (F1,6 = 13.75 at e = 0.01) assigns at a highly 
significant level a strong belief that the steady state in 
process variable i has changed. Similarly, a t~ value 
lessthan 1.71 x 10 -4  (/76,1 =- 5859 a t e  = 0.01) assigns 
at a highly significant level a strong belief that there is 
no change in the steady state of process variable i. (In 
neither case is a detailed computation via Table 1 
necessary.) 

4. Comparison with multivariate statistical analysis 

As discussed by Narasimhan et  al. [5], the procedure 
via conventional multivariate statistics consists of two 
tests. In the first one the null hypothesis SI = $2 is 
tested, where $1 and S 2 are the sample estimates of the 
true measurement error covariance matrices s and s 
for the first and second observation periods, respec- 
tively. In the second part the null hypothesis x--[ = x~ 
is tested, where x~ and ~ are the means of the obser- 
vations in the first and second observation periods, 
respectively. The exact procedure, described in detail 
in the Appendix of [5], requires time-consuming vector- 
matrix manipulations, and an a pr ior i  trial-and-error 
probability computation involving the )~2 distribution, 

for the testing of the first null hypothesis. The test 
statistic in the analysis of the second null hypothesis 
is distributed as Hotelling's T 2 variable [4] via the 
relationship 

2N - 2 
72 = P 2 N  - 1 - p F~(va' v2) (6) 

where Vl = p and v2 = 2 N  - 1 - p are the degrees 
of freedom of the F distribution. If the computed T 2 

is larger than T ff given by Equation 6 at a specified 
level of significance e, the x~ = x 2 hypothesis is 
rejected and a change in the steady state is indicated. 
In studying the power of this composite test procedure 
Narasimhan et  al. [5] have shown that the probability 
or rejecting the x~ = x~ null hypothesis when one or 
more process variables have changed their states can 
be as low as 0.2 under certain conditions unless p and 
N are sufficiently high. They have also shown [3] that 
the MTE method has a virtually identical power struc- 
ture: it follows that failure to reject the x-~ = x~ null 
hypothesis (multivariate statistical approach) or a 
large value o f F ( S )  obtained by the MTE method may 
not be conclusive if p and N are small. 

5. Application to electrochemical processes: 
numerical illustrations 

5.1. E x a m p l e  1: c o n t i n u o u s - f l o w  e lec t ro lys i s  

In a continuous-flow electrolytic process three process 
variables, the cathodic current density (i = 1), the 
concentration of a certain impurity in the anolyte 
(i = 2) and the anode dissolution rate (i = 3), are 
considered to represent fully the state of the process, 
to be mutually independent and are measured five 
times over a certain time period. Table 2 contains sets 
of measurements taken in two adjacent time periods 
(of equal length). Has the process changed its steady 
state from one time period to the other? 

The t 2 variates are computed via Equation 4: 

t~ = 5(6.46 - 4.86)2/(0.3528 + 0.04285) = 32.86 

t22 = 5(2.92 - 3.28)2/(0.1467 + 0.06708) = 3.031 

t 2 = 5(0.118 - 0.082)2/(3.686 x 10 -4 + 1.7 x 10 4) 

= 12.03 

Table 2. Process variable measurements in two adjacent observation periods (Example 1) 

First period Second period 

i = 1  i = 2  i = 3  i = I  i = 2  i = 3  
( A d m  -2) (ppm) (gday 1) ( A d m  2) (ppm) (gday -~) 

Mean value 
Variance 

7.0 3.2 0.11 5.1 3.5 0.08 
6.4 3.2 0.14 4.9 3.0 0.07 
6.9 3.1 0.09 4.7 3.2 0.09 
5.5 2.3 0.12 4.6 3.1 0.10 
6.5 2.8 0.13 5.0 3.6 0.07 
6.46 2.92 0.118 4.86 3.28 0.082 
0.3528 0.1467 3.686 • 10 -4 0.04285 0.06708 1.7 • 10 4 
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and compared  to the critical values o f  the r andom 
variable F~ with degrees o f  f reedom vt = 1 and v2 = 
2(5) - 2 = 8: F0.05(1, 8) = 5.82 and F00~(1, 8) = 
11.26 [8]. Following the steps described in Table 1, the 
belief functions are computed  to be: 

A ( S )  = 0 

f2 (C)  = [2c~-  1 + (1 - ~)(1)]/~ = 1 for allc~ 

f ~ ( u )  = 0 

f2(S) = 0.125 

A ( c )  = o 

A ( u )  = 0.875 

A ( s )  = o 

A ( C )  = [2(0.05) - 1 + (1 - 0.05)(0,996)]/0,05 

= 0.932 (c~ = 0.05) 

f3(C)  = [2(0.01) - 1 + (1 - 0.01)(0.996)]/0.01 

= 0.604 (c~ = 0.01) 

A(u) = 0 . 0 6 8  (~  = 0 . 0 5 )  

f3(U)  = 0.396 (c~ --- 0.01) 

The combined beliefs are given by Equat ions  1-3 as: 

r  = (0 + 0)(0.125 + 0.875)(0 + 0.068) 

= 0 (c~ = 0.05) 

O(S) = (0 + 0)(0.125 § 0.875)(0 + 0.396) 

= o (c~ = O.Ol)  

0 ( C )  = (1 + 0)(0 + 0.875)(0.932 § 0.068) 

= 0,875(~ = 0.05) 

~b(C) = (1 § 0)(0 + 0.875)(0,604 + 0.396) 

= 0.875 (~ = 0.01) 

~b(U) = (0)(0.875)(0.068) = 0 (e = 0.05) 

q~(U) = (0)(0.875)(0.396) = 0 (e = 0.01) 

U p o n  normalizat ion (i.e. dividing each 0 by ~b(S) + 
q~(C) + qS(U)) the final values are qS(S) = O; ~b(C) = 1; 
~b(U) = 0 at bo th  levels o f  significance, indicating a 
very strong belief that  the steady state has changed 
f rom one observat ion period to the next one. 

Conventional  multivariate statistical analysis fails to 
reject the null hypothesis that  the covariance matrices 
o f  the two observat ion periods are identical at both 
levels o f  significance, but  it rejects the null hypothesis 

Table 3. Process variable measurements in two adjacent observation 
periods (Example 2) 

First period Second period 

i = 1  i = 2  i = 1  i = 2  
(%) '(o c) (%) (o c) 

Mean value 
Variance 

53.5 94.1 50,5 93.9 
54.2 94,1 51.2 95. I 
54.7 95.2 55.3 96.2 
53.6 96.1 52.8 94.2 
56.2 95.8 55.4 94.2 
52.8 94.9 52.1 96.1 
51.1 94.3 54,5 94.9 
55.3 95.7 52.1 95.0 
55.9 95.8 55,7 95.2 
54.7 96.2 53.1 92.9 
54.22 95.22 53.27 94.77 
2.3618 0.6773 3,4468 1,0090 

that the two sets o f  mean observations are equal 
(T 2 = 33 274). The final result o f  the two methods  is 
the same but the M T E  calculation sequence is much 
faster. 

5.2. Example 2 

A fuel cell is operated at a certain por t ion o f  its full 
power capacity and its operat ing state is considered to 
be described by its efficiency (i = 1) and temperature 
(i = 2). The observat ion sets in two consecutive time 
periods are shown in Table 3. 

The t 2 variates 

t~ = 10(54.22 - 53.27)2/(2.3618 + 3.4468) = 1.554 

t 2 = 10(95.22 - 94.77)2/(0.6773 + 1.0090) = 1.201 

being smaller than the appropr ia te  critical values o f  
F0.05(1, 18) = 4.414 and F00j(1, 18) = 8.29 [8], the 
belief functions are computed  at both  levels o f  signifi- 
cance via Step 2a in Table 1. The results o f  the calcu- 
lation given in Table 4 may  be compared  to the 
conventional  multivariate statistical analysis, which 
fails to reject the null hypothesis  o f  equal covariance 
matrices at both  levels o f  significance as well as the 
null hypothesis o f  equal observat ion means (the com- 
puted T 2 = 3.117 is less than the critical value o f  
T 2 = 7.61 (e = 0.05) and T 2 = 12.94 (c~ = 0.01)). 
The M T E  method  assigns a reasonable degree o f  belief 
to the hypothesis that  there has been no change in the 
state o f  operation; it also indicates a weak but  not  
negligible belief in the opposite, and an equal degree 
o f  uncertainty about  the two beliefs. The result o f  the 

Table 4. Summary of the theory of evidence approach to the Ji~el cell operation in Example 2 

Level of significance 

= 0.05 ~ = 0.01 

i = 1  i = 2  i = 1  i = 2  Normalized 

f (S) 0.282 0.286 0.282 0.286 q~(S) 1 0.477 
f (C)  0 0 0 0 O(C) 0.548 0.261 
f (U)  0,768 0,714 0,768 0,714 q~(U) 0.548 0.261 
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conventional multivariate method is not an acceptance 
of the no-change hypothesis, but simply an incapa- 
bility to reject it: there is no numerical indication of 
the weakness of this result, in contrast to the MTE 
approach which yields a quantitative measure of 
uncertainty. 

5.3. Example  3 

This is a variation of Example 1, by assuming that 
the cathodic current density (i = 1) alone is sufficient 
to fully represent the state of the electrolytic process 
in any observation period. The combined belief 
functions 

~ ( S )  = f~ (S )  + f l ( U )  = 0 

4 ( C )  = f~ (C)  + f ~ ( U )  = 1 

~)(U) = f l ( U )  = 0 

are identical numerically to those obtained in 
Example 1; this finding indicates that there was a 
sufficiently large change in the cathodic current den- 
sity to induce a change in the state of the process; it 
does not follow, however, that the anolyte impurity 
and anode dissolution rate are indifferent process 
variables. Comparison with conventional multivariate 
statistical analysis is simple in this 'single-parameter' 
case, where the critical region for the test statistic [4] 
in the covariance-matrix test 

is given as: 

( s,s  4 
w = s +s J (7) 

W~ > exp [ -  87- X~] (8) 

and X~ must satisfy the approximate probability 
condition 

Pr(){~ ~< X~) = 1 - e (9) 

for the Z 2 distribution, with one degree of freedom. 
From Table 2, W = 0.0937 and since [8] X = 3.84 
(e = 0.05) and X = 6.63 (e = 0.01), it follows that 
the null hypothesis of equal covariance matrices is 
rejected at a highly significant level. The null hypo- 
thesis of equal means is similarly rejected at a highly 
significant level by the Student's t-test comparing the 
test-statistic value of: 

6.46 - 4.86 
t = 51/2 = 5.69 

(0.3528 + 0.04285) 1/2 

to the critical values of t = 2.776 (c~ = 0.05) and 
t = 4.604 (a = 0.01) with four degrees of freedom 
[8]. Both methods indicate strongly a change in the 
state of the electrolytic process, but the MTE method 
remains faster even in the single parameter case. 

6. Extensions and limitations 

The MTE approach is not limited to two consecutive 
observation periods; for the detection of a change in a 
slowly varying steady state several observation periods 
may, in fact, be necessary. In one strategy [5] the 

period pairs (1; 2), (1; 3), (1; 4), etc. are subjected to 
the test until a change is found at the kth period; then 
the pairs (k; k + 1), (k; k + 2), etc. are tested in the 
same fashion. Alternatively, the (1; 2), (2; 3), etc. 
observation pairs can be tested in a similar fashion. 
Rapidly changing steady states (generated for example 
by random variations in a plant) would most likely be 
sensed by tests on only two adjacent observation 
periods. 

The knowledge of the full set of independent 
process variables which fully characterizes the process 
is of crucial importance, since if for an arbitrary j t h  
variablefj(S) = f j (U) = 0, the MTE approach indi- 
cates no change in the steady state even i l l ( S )  r 0, 
f ( U )  r 0 for all the other i r j process variables. If, 
therefore, the j t h  variable is not included (e.g. by 
ignorance) in the set, the results are misleading. The 
attractiveness of the MTE approach increases with the 
size of the set because each additional computation 
of the t 2 statistic, belief functions, and composite 
beliefs adds a minimal encumbrance, whereas the 
increase in vector-matrix dimensions due to an increase 
in p renders the conventional multivariate statistical 
approach numerically more cumbersome: at large p, a 
digital computer is necessary for efficient calculation, 
whereas MTE-based calculations can be carried out 
on pocket calculators. 

Ther most important limitations of the MTE method 
are related to the error structure of observations: the 
measurements must contain only normally distributed 
random errors with zero mean vector O and their true 
covariance matrix lg (usually unknown) should be 
diagonal and a constant from one observation period 
to the other. Further, the process variables must be 
independent, inasmuch as the belief functions can be 
significantly biased otherwise. Finally, the probability 
of false null hypothesis rejection and the power of the 
MTE method cannot be calculated directly: extensive 
simulation studies [3, 5] indicate, however, that the 
proportion of simulation trials rejected by MTE and 
the power of conventional multivariate analysis (based 
on Hotelling's T 2 distribution) are virtually the same 
under identical simulation conditions. 

7. Concluding remarks 

An interesting question arising from this analysis is 
whether the method is capable of indicating the length 
of transients between successive steady states. Since 
the constancy of the describing state variables within 
each observation period is an underlying assumption 
for the test [3], if this constancy condition is not satis- 
fied, the MTE method will yield a relatively large 
belief for change, or a relatively large belief for uncer- 
tainty, even if qS(S) is not small. It is a matter of 
engineering judgement whether a process undergoes a 
series of transitions between successive steady states, 
or is in a truly dynamic state: the method will, in any 
event, indicate a variation in the state and therein lies 
its strength. 
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Appendix 

The T 2 statistic is defined as: 

T 2 = N ( X  - f t ) r S  ' ( 2  - # )  (A1) 

where J? is the mean vector o f  a sample o f  size N, # is 
the popula t ion mean vector and S is the sample 
covariance matrix, an unbiased estimate o f  the true 
(population) covariance matrix 2;. Let Xj., j = 1 . . . .  , N 
be sample observations f rom the N(#, Z) populat ion.  

Then, the distribution o f  the 

T 2 = N ( X  - # o ) r S - ~ ( X  - #0) (A2) 

statistic is related to the non-central  F distribution 
with non-centrality parameter  N(#  - #0)rE - l  (/~ - /~0).  
If, specifically,/~ --- #0 (i.e. a null hypothesis  with a 
specified value o f  #), the F distribution is central and 
the critical region of  the hypothesis test at a level o f  

significance c~ is 
T 2 >  T~ 

where 

T~ = (N - 1)p F~(p;  N - p )  (A3) 
N - p  

The t 2 statistic defined by Equat ion  4 is a r andom 
variable distributed as T 2 with corresponding degrees 
o f  f reedom (of  the related F distribution) 1; 2N  - 2 
[3, 5]. It follows f rom Equat ion  A3 that  

T~ = F~(1; 2N - 2) (A4) 

in this part icular instance; the fact that  an F value with 
one degree o f  freedom can be considered as a square 
o f  Student 's  t-statistic is well known  in single-variate 

statistics (e.g. [91). 
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